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VIF-GNN: A Novel Agent Trajectory Prediction
Model based on Virtual Interaction Force and GNN
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Abstract—Agent trajectory prediction of traffic scenarios is
a significant module of environment reasoning and autonomous
vehicle decision, and the core challenge is the ability to
interaction reasoning under complex scenes. Previous prediction
models are either not precise enough or require massive
computational costs. In this paper, we propose VIF-GNN, a
novel traffic agent trajectory prediction framework based on the
Virtual Interaction Force (VIF) concept and Graph Neural
Network, which consists of semantic feature engineering, a
subgraph encoder, a global graph, and the trajectory decoder.
In particular, this method extracts vectorized features including
VIF adjacent matrix from raw inputs and transfers them into
graph nodes through the subgraph encoder. The global graph
module obtains spatiotemporal reasoning information from four
various interaction layers combined with the VIF prior
knowledge. And the decoder translates the graph into
trajectories of the target agent. Experiments prove that VIF-
GNN could achieve precise forecasting on both single and multi-
modal prediction task compared with the baselines while
maintaining a relatively light parameter size scale, ensuring the
real-time performance of vehicle platform applications.

Keywords—Autonomous  vehicle, trajectory prediction,
interaction reasoning, graph neural network.

I. INTRODUCTION

Autonomous Vehicle (AV) has aroused extensive interest
with the expectation of improving transportation safety,
comfort, and efficiency. From the view of technique, AV can
generally be decomposed into four modules: perception,
environment assessment, decision, and control [1]. To realize
AV in complicated traffic scenarios, environmental
assessment is a pivotal process, reasoning the surrounding
context and forming restrictions for later decisions [2, 3], and
the trajectory prediction of other agents is an important
component of environment assessment [4].

The methods of trajectory prediction could be divided into
two categories: rule-based and deep-learning-based models.
The rule-based ones predict the future motions of agents based
on kinetic models, such as constant velocity and constant
acceleration models. Although interpretable, they are too
rudimentary to cope with the highly interactive real traffic
scenarios. In recent years, deep learning (DL) has been widely
applied to trajectory prediction and achieved significant
processes on accuracy and prediction time duration [5].
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However, although the DL-based methods have performed
well in regular scenarios, there is still room for improvement
in complex interaction scenes where multiple agents influence
each other, such as crowded intersections with no signal lights,
crossing exposed to conflict vehicles, etc. [6].

One of the core challenges for trajectory prediction in
complication scenarios is the understanding and modeling of
context interaction. In the previous method, the context was
usually expressed by simple physical indicators such as time
headway and time to collision [7, 8], which lost substantial
interaction features. Some other research utilized large-scale
DL models with an input with huge dimensions to extract the
context features with a black-box method. Stacked
Convolutional Neural Network (CNN) layers with rasterized
sequential image inputs or multi-head transformers could filter
part of connections among agents’ behaviors [9-11]. However,
because of the large number of parameters and the high
requirements for bird-eye view inputs, the models are
computationally expensive, resulting in difficulty in
applications on real vehicles. In addition, due to the lack of a
systematic understanding of the traffic environment, the
generalization ability of these models is insufficient, failing to
capture the essential features of context understanding.

In recent research, graph-based methods have been proven
to be a good medium to represent the traffic environment [12].
Fig. 1 shows the structure of a Dynamic Directed Graph
(DDG). The nodes denote the various elements within the
scene including vehicles, lanes, time frame, etc., and the
directed edges represent the interaction features. DDG has a
strong capability of expressing relationships between agents
meanwhile being expandable [13]. And together with the
vectorized scenario features and Graph Neural Networks
(GNN), DDG naturally extract road topology features with
minor information loss and potentially less computational cost.
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Fig. 1. Example of a dynamic directed graph for a traffic scene.
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Fig. 2. The framework of VIF-GNN.

This paper proposes VIF-GNN, a novel trajectory
prediction method of multi-agents based on the Virtual
Interaction Force (VIF) concept and GNN architecture, as
shown in Fig. 2. Our contributions are listed below:

e With the abstraction of the traffic context, we design a
systemic semantic feature engineering module
including the VIF adjacent matrix to extract the
interaction among agents.

e Based on Graph Neural Networks, we establish a
global scene graph consisting of four interaction layers
and merge the VIF matrix into the network to enhance
spatial interaction reasoning.

o The forecasting results show good accuracy with a
relatively small scale compared with other models.

The rest of this paper is organized as follows. Section 2
reviewed the related works on feature engineering and
backbone DL model design. Section 3 introduces our
proposed agent trajectory prediction method from the aspect
of the framework, feature engineering, subgraph and global
graph design, and the decoder. In Section 4, we describe the
experiment condition setting and present quantitative
experiment results. Conclusions are given in Section 5.

II. RELATED WORKS

The architecture of a trajectory prediction structure can be
decomposed into the feature engineering module and the
backbone deep learning model. In this section, we review the
latest research progress of these two aspects and extract
valuable details that are worth referring to.

Feature engineering. The primary feature derived from
the perception module is physical properties, which are
indispensable for trajectory prediction. Yu et al. summarized
that regular discrete agents ’  physical features include
relative distance, velocity, acceleration, direction, and types
[13], and Wang et al. mentioned that lanes could be
represented by continuous vectors with fixed lengths [14].
Apart from fundamental characteristics, in recent years many
high-order features have been utilized and found powerful for
interaction relationship extraction. Attention distribution
among the vehicles is a valuable and direct feature to capture
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connections, and Self-attention and cross-attention modules
are two major modes [15, 16]. The M2I model introduced the
concept of dual influencers and reactors to reflect whether a
potential conflict on the road is possible [17]. STGM model
preset seven sampling models with various heading angles [18]
to fulfill the requirements under different situations. Such
multi-head concept of feature engineering is popular in recent
research. The energy field is another typical type to represent
the interaction[3]. Field-based models assessed the driving
risk as a continuous quantitative energy distribution on the
local scenario so that by calculating the directed gradients the
relative behavioral tendency was derived [19]. Wang et al.
proposed the Driving Safety field to comprehensively consider
the influences of common elements in traffic scenarios such as
moving agents, static obstacles, curbs, etc. [20]. In summary,
other than basic physical properties, high-order interactive
features are helpful to understand traffic scenarios.

Backbone DL model. Sequential models used to be
popular prediction backbone because of their strong ability to
form temporal reasoning results. Recurrent neural networks
and Long-short term memory networks are two typical
examples [21, 22]. Due to the lack of spatial reasoning ability,
the prediction accuracy of sequential models was limited, and
in recent years scholars have turned to other backbone
categories. Transformers were found to be powerful in
trajectory prediction with the mechanism of extracting all
correlations between agent pairs. Mercat et al. proposed a
multi-head attention transformer method to consider the
interactions of other agents [23]. Liu et al. used stacked
transformers to further enhance spatial reasoning [24]. GNN
is another backbone model which has a strong capability to
analyze the interactive relationships within traffic scenarios.
Compared with Transformer, GNN can not only derive agent-
agent interaction but also derive agent-road interaction by
abstracting lanes as subgraph nodes [25]. Combined with
social pooling layers, GNN represents traffic scenes well
while maintaining a relatively small amount of model
parameters [26, 27].

Based on the background review above, in this work we
design a novel semantic feature engineering and combine it
with GNN to generate multi-modal trajectory prediction of
vehicles, achieving accurate forecasts with fewer parameters.
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III. METHODS

A. Model Framework

The framework of the proposed trajectory prediction
model VIF-GNN is illustrated in Fig. 2, consisting of four
modules: feature engineering, subgraph encoder, global graph,
and trajectory decoder. First, the raw physical properties of
agents and maps are transferred into vectorized features.
Based on the driving safety field, we also proposed the concept
of virtual interaction force (VIF) and extract the force matrix
which is used as prior knowledge in the latter training process.
The subgraph encoder organizes lane and agent features into
the form of node features prepared for graph establishment. In
the global graph module, four network blocks based on
attention mechanism are designed and connected to obtain
various kinds of interactive relationships. Combined with the
prior knowledge derived from the VIF matrix, a global graph
representing the traffic scenario context is finished. And a
decoder based on a multi-layer perceptron translated the graph
into continuous multi-modal agent trajectories. The details of
the modules are introduced below.

B. Semantic Feature Engineering

The first process is to extract valuable features from raw
agent information, which is could feature engineering. The
Feature Engineering module is composed of three elements:
agent feature, lane feature, and VIF adjacent matrix. The
feature vector of an agent i at one frame V;* is defined as (1):

Ve = [locs'™t loct™ v, t; ig] (1)
lOCftaTt — [xstart ystart]’ lOC?nd — [xend yend] (2)
v =[x W] (3)

where loc$™t and locf™ is the location of the starting

and ending point of the trajectory vector at this timestep which
are two-dimension lists with the x-axis and y-axis coordinates
as shown in (2), v; is the velocity list containing x and y
components as shown in (3), ¢; is the timestamp, and i, is the
sorting rank position of the distance to the prediction target
vehicle which is an integer from 1 to 15.

In complicated scenarios, the number of agents could be
very large (e.g., in Argo 1 datasets, over 20% of events involve
at least 20 agents), but most of them have little impact on the
behavior of the target vehicle. Therefore, a filtering technique
is needed to select those agents that are more possible to
influence the motions of the vehicle, and relative distance is a
simple but effective measurement. In this research, for each
frame, we sort the distance between the target vehicle and
other agents only retaining 15 nearest ones. Meanwhile, a sort
serial mark is labeled in V;* to express this initial interaction
relationship feature. For the events where there are fewer than
15 agents, to maintain the dimension of inputs equal, zero
vectors are filled in. Hence, for each frame, the features of all
agents considered consist of 15 individual vectors.

In HD maps, lanes are expressed in the form of basic
geometry such as spline, which can be approximated as
sequences of lane vector segments to acquire graphic
representation. Consequently, the feature vector of one lane j
at one frame V}-l is defined as (4):

Ve = [loci* ™™ locs™ t; 6; its sld]  (4)

start d

where loc; and loc™ are the starting and ending
location vectors of the segment, t; is the timestamp, and 6 is
the relative direction compared with the target vehicle, its and
sld are binary flags to judge whether this lane segment is in
an intersection and solid line, as defined in (5).

sl = {1, solid )

. 1, in intersection
its =
0,else

0, else

Similarly, it is unrealistic to consider all lane segments with
the region of interest. In this research, we select the nearest 40
segments as the input of the latter modules.

Other than physical properties, in this research, we
innovatively designed a virtual field force adjacent matrix
based on Driving Safety Field (DSF), which is a powerful
feature to illustrate the relative importance among agents to
the target vehicle. As mentioned above, DSF utilized an
energy field model for the risk of an agent [20]. The risk
energy of an agent locating (x,,y,) at generate on one spot
(x;, y;) within the region of interest is calculated as (6):

1 =] ©

kol Cta = x)2+ Qg —y)? Ta

where E denotes the risk energy, E, is a constant base energy
value (in our approach, E, = 100), r; is the length of the
agent, and k,, is the direction gradient parameter, as
demonstrated in (7) [28]:

Eal:E

[vmax — v, - tanh(x, — x;) - tanh(v; — v,l)]2
kx.O = 2 (7)
[vmax + v, - tanh(x, — x;) - tanh(v; — va)]

where v, represents the speed limit, v; and v, denote the
velocity of the risk source and the target spot. Fig. 3
demonstrates a sample of DSF, where the black square
represents the risk source agent (vehicle).
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Fig. 3. An example of Driving Safety Field distribution.

Based on the field energy, we further develop the Virtual
Interaction Force concept, denoting the average pooling of the
field energy the risk source i generates within the range of the
target vehicle j as shown in (8):

ffs}. E;jds
Fij = T (8)
where §; is the cover area of the target vehicle and E;; denotes
the risk energy of the spots within S;. In Fig. 2, VIF can be
interpreted as the average energy intensity within the red box.
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It is to be mentioned that if the force one object imposes on
itself is defined as 0.

Fij — ml'nFij
13

F = :d 9
Y maXFij —mlnF” ( )
ij ij
F=[F] (10)

After selecting the 15 nearest agents (including the ego
vehicle), calculate VIF between all pairs and conduct
normalization following (9). Then, arrange all results in the
form of an adjacent matrix F as (10).

So far, three types of features have been extracted through
raw physical data. For one prediction task, assume H
historical frames are considered, then agent features, lane
features, and VIF matrix of past H frames are calculated and
concatenated as sequential input tensors. The sizes of them are
HX15%x8,HXx40x8,and H X 15 x 15.

C. Subgraph Encoder

To transfer vector inputs of agent and lane features into
learnable nodes of GNN, a polyline subgraph encoder is used
before establishing the global graph. Polyline subgraph is a
hierarchical approach to exploit spatial and semantic locality
proposed by VectorNet [29]. The architecture can be
described as three stacked layers of subgraph operator in (11):

VO = 0re (000e V). gy ({3enc¥)))) 1D

where Vl@ represents the i-th node feature for the [*" layer of
the subgraph network. Each layer is considered a node encoder,
permutation invariant aggregator, and output node feature.
Node encoder g, is designed to transform individual node
features, implemented by multi-layer perceptron (MLP)
containing contains linear-layer, ReLU activation, and layer
normalization. The aggregator @4, is the max-pooling
operation intended to model the interaction between different
polylines. The results of former two operators are
concatenated into output node feature by ¢,.,; to constrained
subgraph connectivity based on polyline groups. Three
identical levels of this structure introduced are stacked
together to model higher order of connectivity and to further
ensure aggregation effectiveness. Finally, a max-pooling
operation is applied to obtain polyline-level features p in (12):

P = QPagg (V53)) (12)

Conduct polyline subgraph encoding to both agent and
lane features and all outputs p are served as the input node
features of the global graph.

D. Global Graph Network

Vehicle future trajectory is influenced not only by past
trajectory and lane constraints (including lane direction, traffic
sign, etc.) but also by surrounding agents. To model higher-
order interaction for both agent-to-agent and agent-lane, we
design an attention-based global graph network composed of
four attention layers. Multi-head attention[16] can capture
long-range dependency by taking the entire context into
consideration, and reasoning spatiotemporal interactions in
sequential data problems.

The structure of the global graph neural network is shown

in Fig. 2, consisting of lane-lane, lane-agent, agent-agent, and
global interaction layer, which are all realized by the attention
model. The attention mechanism is defined as (13) and (14):

Q = wex, K=w?%, Vv=wq% (13)
. QK"

Attention(Q, K,V) = softmax \/d_ |74 (14)
k

where X and Y are input features, Q, K, V are attention query,
key, and value respectively, and dy is the key channel (the size
of K’s first dimension). For multi-headed conditions, Q, K,V
are further split to the same size in the last dimension as heads.
They are sent into the attention mechanism respectively and
combined together as output. When X equals to ¥, it is defined
as self-attention; otherwise, it is called cross-attention.

The first lane-lane interaction layer extracts the road
restrictions by considering the connection relationship and
whether they are drivable. The calculation follows (13) and
(14), where X and Y are both lane node features. Subsequently,
the agent-lane layer could form elementary reasoning since
vehicles drive along lanes. The modeling is similar to the lane-
lane layer except that X are lane nodes and ¥ are agent nodes.

The next step is to consider the influences of other agents.
In feature engineering, we have derived the VIF adjacent
matrix F in (10). To merge the prior semantic knowledge and
the results of network training, we design a trainable weight w
to adjust the input features automatically as demonstrated in
(15), where X are the agent nodes updated by the former two
layers. Weighted inputs are imported into a self-attention layer.

(15)
The final layer is global interaction, which takes all
elements to derive above into comprehensive account. The
global input feature is the concatenation of the third-layer
outputs and the initial lane nodes. The context extraction also
utilized a self-attention mechanism. Finally, a global graph
representing the traffic scenario context is established.

E. Multi-modal Decoder

After the global graph block, the feature of the target agent
is obtained, which contains the information on interactions
between the target agent and traffic elements. The last step
toward trajectory prediction is to decode the semantic context
global graph into precise routes.

X =wX+(1-w)F

We apply a three-layer MLP to generate 6 predicted
trajectories and another three-layer MLP to get the trust scores
of all the trajectories which are formed as one-dimension
vectors. For the m*" agent, we apply a residual block and a
linear layer in the regression branch to regress the sequences
of trajectory coordinates, as illustrated in (16):

P ={(T) TE, TE

m1l "m2’ "m3 "

LT} ke[Le]nN  (16)

where T,’,‘l‘t is the predicted m-th agent's trajectory
coordinates of the k-th mode at the t** time step. The single
trajectory prediction follows the same method. Similarly, for
the classification branch, we apply an MLP to P, to get six-
distance embedding. Then concatenate each distance
embedding with the agent feature, and add a residual block
and a linear layer to output six reliability scores {S}}. After
the process of feature engineering, subgraph extraction,

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on October 18,2025 at 17:29:36 UTC from IEEE Xplore. Restrictions apply.



global graph establishment, and multi-modal decoding, the
trajectory prediction results of agents could be derived.

IV. EXPERIMENTS

A. Experiment Condition Setting

In this research, we conducted training, testing, and
validation on Argoverse (Argo) tracking dataset [30]. Argo
provides abundant precise trajectories of all agents within over
300k scenarios while offering a high-definition semantic map
containing lane, traffic light phase, and other environmental
information. Each instance is sampled in 10 HZ and
trajectories are presented as 5-second-long sequences, where
the former is 2 seconds as history trajectory and the latter 3
seconds as prediction ground truth. Moreover, a large number
of scenarios in Argo are complicated ones such as unprotected
steering, lane changing, etc., requiring a strong ability to
understand complex traffic contexts. During the feature
engineering of the experiment, we extracted 205,942 training
data and 39,472 validating data.

Minimum Final Displacement Error (minFDE) and
minimum Average Displacement error (minADE) are used as
evaluation metrics of the models. MinFDE is defined as the
minimum L2 distance error between the endpoint of the
forecast trajectories and the ground truth. And minADE is
defined as the L2 distance error between ground truth and the
forecast trajectory with the lowest FDE.

The specific task is to use the history information of the
past two seconds to predict the trajectory in future three
seconds. In this experiment, we test the performance of our
model on both single trajectory and multi-modal trajectory
prediction (k = 6), as mentioned in (16).

B. Baseline Models

To make a comprehensive comparison with current
prediction models, we select three different types of models as
baselines which are Sequential models, transformer-based
models, and other graph-based models. To consider the real-
time requirements while applied to real vehicles, we only
select models with fewer than 1000k parameters.

1) Sequential model. As introduced in Section 2,
sequential models including LSTM, RNN, etc. have shown
remarkable performance in dealing with sequential data. In
this experiment, by referring to prior research we adapt
LSTM to multi-modal prediction tasks by first using a
subgraph encoder to preprocess the input agent feature [21].
The architecture is shown in Fig. 4. After an additional linear
layer, LSTM layers are directly used to process the target
feature. The output is further placed in multi-modal or single
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Fig. 4. The architecture of the LSTM baseline model.

2) Transformer model. Transformer-based methods are
capable of capturing interaction dependency in sequential
data and thus possess long-term memory. In this experiment,
we adapt the transformer structure introduced in [24] to serve

as a baseline, consisting of an encoder block and decoder
block, as shown in Fig. 5. Agent features are sent into masked
multi-head attention. All layers are associated with residue
connection. Apart from the transformer decoder, we attached
a multi-modal decoder to adapt a particular prediction task.
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Transformer
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Fig. 5. The architecture of the LSTM baseline model.

3) GNN models. We also selected several other graph-
based models as baselines, including VectorNet [29], TNT
[31], and GOHOME [25]. These methods contained various
backbone designs and techniques of feature engineering, such
as graph convolution, heat map weighting, etc. Because the
authors of these models have conducted experiments on the
same Argo dataset, in this research we directly use the data
recorded in their publications (VectorNet for single
prediction and the other two for multi-modal prediction).

C. Results

After training for 50 epochs combined with linear learning
rate decay and a large amount of model tuning, the model
converges to the best performance on single and multi-modal
trajectory prediction. The comparison results are shown in
Table. I and Table. II.

TABLE L SINGLE TRAJECTORY PREDICTION RESULTS
Model minADE(m) minFDE(m)
LSTM 1.66 3.74

Transformer 1.54 3.45
VectorNet 1.66 3.67
Ours 1.40 3.06

Our method leads to the performance of a single trajectory.
The minADE is 1.40 m, and the minFDE is 3.06 m, which are
both the best results among all baselines. Due to the novel
design of a four-layer global graph architecture to extract
interactive relationships, our model emphasizes the spatial
reasoning of the traffic scenarios, which is lacking in the
baselines.

TABLE II. MULTI-MODAL TRAJECTORY PREDICTION RESULTS
Model minADE(m) minFDE(m)
LSTM 0.90 1.65

Transformer 0.80 1.36
TNT 0.73 1.29
GOHOME - 1.26
Ours 0.74 1.17

* GOHOME only published minFDE results

As for multi-modal trajectory prediction, the minADE and
minFDE of our model is 0.74 m and 1.17 m. Although the
minADE is slightly higher than TNT, our minFDE metric is
9.3% better than TNT, making the ending point of the
trajectory more precise. In summary, our model achieves good
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performances on both metrics compared with current small-
scale multi-modal trajectory prediction models. To be
mentioned, the final parameter size of our best model is 438k.

TABLE III. ABLATION RESULTS OF VIRTUAL INTERACTION FORCE
w minADE(m) minFDE(m)
1 0.78 1.22
0.25 0.75 1.19
0.5 0.74 1.17

To further verify the proposed VIF concept, we conduct an
ablation study to test its impact on it the prediction precision.
In the backbone model, the weight between the VIF matrix and
the attention result w is automatically learned through training
process, which is about 0.5 in the final results. To illustrate the
effect of VIF concept, in this ablation experiment we adjust it
into preset values to test the performance difference. The
closer w is to 1, the less force matrix is considered in the
model, and the results are recorded in Table. III.

The results of ablation study prove that the application of
the VIF adjacent matrix improves the trajectory prediction
performance effectively. When no prior knowledge is used,
the minADE and minFDE are 0.04 m and 0.05 m worse than
the best model respectively. The field energy and force
express the interactions between agents, offering significant
spatial reasoning information to the global graph.

Fig. 6 illustrates some typical prediction examples of
complicated scenarios, including car following, intersection,
unprotected steering, etc. The black lines are lanes, red point
denotes the target agent, the blue points denote other related
agents, the green lines denote the multi-modal predictions of
the target agent’s trajectory, and the red line denotes the
ground truth. As shown in Fig. 6, our model could make
appropriate predictions on various kinds of scenarios
considering interactions and conflicts.
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Fig. 6. A typical prediction example of VIF-GNN.

V. CONCLUSIONS AND DISCUSSION

This paper presents a novel method of traffic agent
trajectory prediction model named VIF-GNN. Based on
Virtual Interaction Force and other semantic feature
engineering, the original scenes are transferred into vectorized
context information. We also design a global graph based on
GNN consisting of four interaction layers.

The experiments on Argo dataset show that VIF-GNN can
achieve precise prediction accuracy in both single and multi-
modal tasks compared with the baselines. For single trajectory
prediction, the minADE and minFDE are 9.1% and 11.3%
better, and for multi-modal the minFDE is 9.3% better with a
roughly identical minADE. Examples show that VIF-GNN
manages to conduct forecasting under complicated scenarios.
The ablation study also verified the positive impact of VIF.

In the future, we will further test the generalization ability
of VIF-GNN by enhancing experiments on various datasets
with different features (highway, roundabout, etc.) and various
downstream tasks other than trajectory prediction such as risk
assessment, behavioral decision, etc.
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