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Abstract—Agent trajectory prediction of traffic scenarios is 

a significant module of environment reasoning and autonomous 

vehicle decision, and the core challenge is the ability to 

interaction reasoning under complex scenes. Previous prediction 

models are either not precise enough or require massive 

computational costs. In this paper, we propose VIF-GNN, a 

novel traffic agent trajectory prediction framework based on the 

Virtual Interaction Force (VIF) concept and Graph Neural 

Network, which consists of semantic feature engineering, a 

subgraph encoder, a global graph, and the trajectory decoder. 

In particular, this method extracts vectorized features including 

VIF adjacent matrix from raw inputs and transfers them into 

graph nodes through the subgraph encoder. The global graph 

module obtains spatiotemporal reasoning information from four 

various interaction layers combined with the VIF prior 

knowledge. And the decoder translates the graph into 

trajectories of the target agent. Experiments prove that VIF-

GNN could achieve precise forecasting on both single and multi-

modal prediction task compared with the baselines while 

maintaining a relatively light parameter size scale, ensuring the 

real-time performance of vehicle platform applications. 

Keywords—Autonomous vehicle, trajectory prediction, 

interaction reasoning, graph neural network. 

I. INTRODUCTION 

Autonomous Vehicle (AV) has aroused extensive interest 
with the expectation of improving transportation safety, 
comfort, and efficiency. From the view of technique, AV can 
generally be decomposed into four modules: perception, 
environment assessment, decision, and control [1]. To realize 
AV in complicated traffic scenarios, environmental 
assessment is a pivotal process, reasoning the surrounding 
context and forming restrictions for later decisions [2, 3], and 
the trajectory prediction of other agents is an important 
component of environment assessment [4]. 

The methods of trajectory prediction could be divided into 
two categories: rule-based and deep-learning-based models. 
The rule-based ones predict the future motions of agents based 
on kinetic models, such as constant velocity and constant 
acceleration models. Although interpretable, they are too 
rudimentary to cope with the highly interactive real traffic 
scenarios. In recent years, deep learning (DL) has been widely 
applied to trajectory prediction and achieved significant 
processes on accuracy and prediction time duration [5]. 

However, although the DL-based methods have performed 
well in regular scenarios, there is still room for improvement 
in complex interaction scenes where multiple agents influence 
each other, such as crowded intersections with no signal lights, 
crossing exposed to conflict vehicles, etc. [6]. 

One of the core challenges for trajectory prediction in 
complication scenarios is the understanding and modeling of 
context interaction. In the previous method, the context was 
usually expressed by simple physical indicators such as time 
headway and time to collision [7, 8], which lost substantial 
interaction features. Some other research utilized large-scale 
DL models with an input with huge dimensions to extract the 
context features with a black-box method. Stacked 
Convolutional Neural Network (CNN) layers with rasterized 
sequential image inputs or multi-head transformers could filter 
part of connections among agents’ behaviors [9-11]. However, 
because of the large number of parameters and the high 
requirements for bird-eye view inputs, the models are 
computationally expensive, resulting in difficulty in 
applications on real vehicles. In addition, due to the lack of a 
systematic understanding of the traffic environment, the 
generalization ability of these models is insufficient, failing to 
capture the essential features of context understanding. 

 In recent research, graph-based methods have been proven 
to be a good medium to represent the traffic environment [12]. 
Fig. 1 shows the structure of a Dynamic Directed Graph 
(DDG). The nodes denote the various elements within the 
scene including vehicles, lanes, time frame, etc., and the 
directed edges represent the interaction features. DDG has a 
strong capability of expressing relationships between agents 
meanwhile being expandable [13]. And together with the 
vectorized scenario features and Graph Neural Networks 
(GNN), DDG naturally extract road topology features with 
minor information loss and potentially less computational cost.  

 

Fig. 1. Example of a dynamic directed graph for a traffic scene. 
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This paper proposes VIF-GNN, a novel trajectory 
prediction method of multi-agents based on the Virtual 
Interaction Force (VIF) concept and GNN architecture, as 
shown in Fig. 2. Our contributions are listed below: 

• With the abstraction of the traffic context, we design a 
systemic semantic feature engineering module 
including the VIF adjacent matrix to extract the 
interaction among agents. 

• Based on Graph Neural Networks, we establish a 
global scene graph consisting of four interaction layers 
and merge the VIF matrix into the network to enhance 
spatial interaction reasoning. 

• The forecasting results show good accuracy with a 
relatively small scale compared with other models. 

 The rest of this paper is organized as follows. Section 2 
reviewed the related works on feature engineering and 
backbone DL model design. Section 3 introduces our 
proposed agent trajectory prediction method from the aspect 
of the framework, feature engineering, subgraph and global 
graph design, and the decoder. In Section 4, we describe the 
experiment condition setting and present quantitative 
experiment results. Conclusions are given in Section 5.  

II. RELATED WORKS 

The architecture of a trajectory prediction structure can be 
decomposed into the feature engineering module and the 
backbone deep learning model. In this section, we review the 
latest research progress of these two aspects and extract 
valuable details that are worth referring to.   

Feature engineering. The primary feature derived from 
the perception module is physical properties, which are 
indispensable for trajectory prediction. Yu et al. summarized 

that regular discrete agents ’  physical features include 

relative distance, velocity, acceleration, direction, and types 
[13], and Wang et al. mentioned that lanes could be 
represented by continuous vectors with fixed lengths [14]. 
Apart from fundamental characteristics, in recent years many 
high-order features have been utilized and found powerful for 
interaction relationship extraction. Attention distribution 
among the vehicles is a valuable and direct feature to capture 

connections, and Self-attention and cross-attention modules 
are two major modes [15, 16]. The M2I model introduced the 
concept of dual influencers and reactors to reflect whether a 
potential conflict on the road is possible [17]. STGM model 
preset seven sampling models with various heading angles [18] 
to fulfill the requirements under different situations. Such 
multi-head concept of feature engineering is popular in recent 
research. The energy field is another typical type to represent 
the interaction[3]. Field-based models assessed the driving 
risk as a continuous quantitative energy distribution on the 
local scenario so that by calculating the directed gradients the 
relative behavioral tendency was derived [19]. Wang et al. 
proposed the Driving Safety field to comprehensively consider 
the influences of common elements in traffic scenarios such as 
moving agents, static obstacles, curbs, etc. [20]. In summary, 
other than basic physical properties, high-order interactive 
features are helpful to understand traffic scenarios. 

Backbone DL model. Sequential models used to be 
popular prediction backbone because of their strong ability to 
form temporal reasoning results. Recurrent neural networks 
and Long-short term memory networks are two typical 
examples [21, 22]. Due to the lack of spatial reasoning ability, 
the prediction accuracy of sequential models was limited, and 
in recent years scholars have turned to other backbone 
categories. Transformers were found to be powerful in 
trajectory prediction with the mechanism of extracting all 
correlations between agent pairs. Mercat et al. proposed a 
multi-head attention transformer method to consider the 
interactions of other agents [23]. Liu et al. used stacked 
transformers to further enhance spatial reasoning [24]. GNN 
is another backbone model which has a strong capability to 
analyze the interactive relationships within traffic scenarios. 
Compared with Transformer, GNN can not only derive agent-
agent interaction but also derive agent-road interaction by 
abstracting lanes as subgraph nodes [25]. Combined with 
social pooling layers, GNN represents traffic scenes well 
while maintaining a relatively small amount of model 
parameters [26, 27].  

Based on the background review above, in this work we 
design a novel semantic feature engineering and combine it 
with GNN to generate multi-modal trajectory prediction of 
vehicles, achieving accurate forecasts with fewer parameters. 

Fig. 2.  The framework of VIF-GNN. 
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III. METHODS 

A. Model Framework 

The framework of the proposed trajectory prediction 
model VIF-GNN is illustrated in Fig. 2, consisting of four 
modules: feature engineering, subgraph encoder, global graph, 
and trajectory decoder. First, the raw physical properties of 
agents and maps are transferred into vectorized features. 
Based on the driving safety field, we also proposed the concept 
of virtual interaction force (VIF) and extract the force matrix 
which is used as prior knowledge in the latter training process. 
The subgraph encoder organizes lane and agent features into 
the form of node features prepared for graph establishment. In 
the global graph module, four network blocks based on 
attention mechanism are designed and connected to obtain 
various kinds of interactive relationships. Combined with the 
prior knowledge derived from the VIF matrix, a global graph 
representing the traffic scenario context is finished. And a 
decoder based on a multi-layer perceptron translated the graph 
into continuous multi-modal agent trajectories. The details of 
the modules are introduced below. 

B. Semantic Feature Engineering 

The first process is to extract valuable features from raw 
agent information, which is could feature engineering. The 
Feature Engineering module is composed of three elements: 
agent feature, lane feature, and VIF adjacent matrix. The 
feature vector of an agent 𝑖 at one frame 𝑉𝑖

𝑎 is defined as (1): 

𝑉𝑖
𝑎 = [𝒍𝒐𝒄𝑖

𝑠𝑡𝑎𝑟𝑡 𝒍𝒐𝒄𝑖
𝑒𝑛𝑑 𝒗𝑖 𝑡𝑖  𝑖𝑎] (1) 

𝒍𝒐𝒄𝑖
𝑠𝑡𝑎𝑟𝑡 = [𝑥𝑠𝑡𝑎𝑟𝑡 𝑦𝑠𝑡𝑎𝑟𝑡],   𝒍𝒐𝒄𝑖

𝑒𝑛𝑑 = [𝑥𝑒𝑛𝑑 𝑦𝑒𝑛𝑑] (2) 

𝒗𝑖 = [𝑣𝑥 𝑣𝑦] (3) 

where 𝒍𝒐𝒄𝑖
𝑠𝑡𝑎𝑟𝑡 and  𝒍𝒐𝒄𝑖

𝑒𝑛𝑑 is the location of the starting 
and ending point of the trajectory vector at this timestep which 
are two-dimension lists with the x-axis and y-axis coordinates 
as shown in (2), 𝒗𝑖   is the velocity list containing x and y  
components as shown in (3),  𝑡𝑖 is the timestamp, and 𝑖𝑎 is the 
sorting rank position of the distance to the prediction target 
vehicle which is an integer from 1 to 15. 

In complicated scenarios, the number of agents could be 
very large (e.g., in Argo 1 datasets, over 20% of events involve 
at least 20 agents), but most of them have little impact on the 
behavior of the target vehicle. Therefore, a filtering technique 
is needed to select those agents that are more possible to 
influence the motions of the vehicle, and relative distance is a 
simple but effective measurement. In this research, for each 
frame, we sort the distance between the target vehicle and 
other agents only retaining 15 nearest ones. Meanwhile, a sort 
serial mark is labeled in 𝑉𝑖

𝑎 to express this initial interaction 
relationship feature. For the events where there are fewer than 
15 agents, to maintain the dimension of inputs equal, zero 
vectors are filled in. Hence, for each frame, the features of all 
agents considered consist of 15 individual vectors. 

In HD maps, lanes are expressed in the form of basic 
geometry such as spline, which can be approximated as 
sequences of lane vector segments to acquire graphic 
representation. Consequently, the feature vector of one lane  j 

at one frame 𝑉𝑗
𝑙 is defined as (4): 

𝑉𝑖
𝑎 = [𝒍𝒐𝒄𝑗

𝑠𝑡𝑎𝑟𝑡 𝒍𝒐𝒄𝑗
𝑒𝑛𝑑 𝑡𝑗 𝜃𝑗 𝑖𝑡𝑠 𝑠𝑙𝑑] (4) 

where 𝒍𝒐𝒄𝑗
𝑠𝑡𝑎𝑟𝑡  and 𝒍𝒐𝒄𝑗

𝑒𝑛𝑑  are the starting and ending 

location vectors of the segment,  𝑡𝑗 is the timestamp, and 𝜃𝑗 is 

the relative direction compared with the target vehicle, 𝑖𝑡𝑠 and 
𝑠𝑙𝑑 are binary flags to judge whether this lane segment is in 
an intersection and solid line, as defined in (5). 

𝑖𝑡𝑠 = {
1, 𝑖𝑛 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

0,          𝑒𝑙𝑠𝑒            
      𝑠𝑙𝑑 = {

1, 𝑠𝑜𝑙𝑖𝑑

0, 𝑒𝑙𝑠𝑒  
     (5) 

Similarly, it is unrealistic to consider all lane segments with 
the region of interest. In this research, we select the nearest 40 
segments as the input of the latter modules. 

 Other than physical properties, in this research, we 
innovatively designed a virtual field force adjacent matrix 
based on Driving Safety Field (DSF), which is a powerful 
feature to illustrate the relative importance among agents to 
the target vehicle. As mentioned above, DSF utilized an 
energy field model for the risk of an agent [20]. The risk 
energy of an agent locating (𝑥𝑎 , 𝑦𝑎) at  generate on one spot 
(𝑥𝑙 , 𝑦𝑙) within the region of interest is calculated as (6): 

𝐸𝑎𝑙 = 𝐸0 (
1

𝑘𝑥,0
2(𝑥𝑎 − 𝑥𝑙)2 + (𝑦𝑎 − 𝑦𝑙)2

−
1

𝑟a
2
) (6) 

where 𝐸 denotes the risk energy, 𝐸0 is a constant base energy 
value (in our approach, 𝐸0 = 100 ), 𝑟a  is the length of the 
agent, and 𝑘𝑥,0  is the direction gradient parameter, as 

demonstrated in (7) [28]: 

𝑘𝑥,0 =
[𝑣max − 𝑣𝑙 ∙ tanh(𝑥𝑎 − 𝑥𝑙) ∙ tanh(𝑣𝑙 − 𝑣𝑎)]

2

[𝑣max + 𝑣𝑎 ∙ tanh(𝑥𝑎 − 𝑥𝑙) ∙ tanh(𝑣𝑙 − 𝑣𝑎)]
2

(7) 

where 𝑣max  represents the speed limit, 𝑣𝑙  and 𝑣𝑎  denote the 
velocity of the risk source and the target spot. Fig. 3 
demonstrates a sample of DSF, where the black square 
represents the risk source agent (vehicle). 

 

Fig. 3.  An example of Driving Safety Field distribution. 

Based on the field energy, we further develop the Virtual 
Interaction Force concept, denoting the average pooling of the 
field energy the risk source 𝑖 generates within the range of the 
target vehicle 𝑗 as shown in (8): 

𝐹𝑖𝑗 =
∬ 𝐸𝑖𝑗𝑑𝑠

𝑆𝑗

𝑆𝑗

(8) 

where 𝑆𝑗 is the cover area of the target vehicle and 𝐸𝑖𝑗  denotes 

the risk energy of the spots within 𝑆𝑗. In Fig. 2, VIF can be 

interpreted as the average energy intensity within the red box. 
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It is to be mentioned that if the force one object imposes on 
itself is defined as 0. 

𝐹𝑖𝑗
̅̅ ̅ =

𝐹𝑖𝑗 − min
𝑖,𝑗

𝐹𝑖𝑗

max
𝑖,𝑗

𝐹𝑖𝑗 − min
𝑖,𝑗

𝐹𝑖𝑗

(9) 

𝑭̅ = [ 𝐹𝑖𝑗 ̅̅ ̅̅ ̅] (10) 

 After selecting the 15 nearest agents (including the ego 
vehicle), calculate VIF between all pairs and conduct 
normalization following (9). Then, arrange all results in the 
form of an adjacent matrix 𝑭̅ as (10). 

 So far, three types of features have been extracted through 
raw physical data. For one prediction task, assume 𝐻 
historical frames are considered, then agent features, lane 
features, and VIF matrix of past 𝐻 frames are calculated and 
concatenated as sequential input tensors. The sizes of them are 
𝐻 × 15 × 8, 𝐻 × 40 × 8, and 𝐻 × 15 × 15. 

C. Subgraph Encoder 

To transfer vector inputs of agent and lane features into 

learnable nodes of GNN, a polyline subgraph encoder is used 

before establishing the global graph. Polyline subgraph is a 

hierarchical approach to exploit spatial and semantic locality 

proposed by VectorNet [29]. The architecture can be 

described as three stacked layers of subgraph operator in (11):  

𝑽𝑖
(𝑙)

 = 𝜑𝑟𝑒𝑙 (𝑔𝑒𝑛𝑐(𝑽𝑖
(𝑙)

), 𝜑𝑎𝑔𝑔 ({𝑔𝑒𝑛𝑐(𝑽𝑗
(𝑙)

)})) (11) 

where 𝑽𝑖
(𝑙)

  represents the i-th node feature for the 𝑙𝑡ℎ layer of 

the subgraph network. Each layer is considered a node encoder, 
permutation invariant aggregator, and output node feature. 
Node encoder 𝑔𝑒𝑛𝑐 is designed to transform individual node 
features, implemented by multi-layer perceptron (MLP) 
containing contains linear-layer, ReLU activation, and layer 
normalization. The aggregator 𝜑𝑎𝑔𝑔  is the max-pooling 

operation intended to model the interaction between different 
polylines. The results of former two operators are 
concatenated into output node feature by 𝜑𝑟𝑒𝑙  to constrained 
subgraph connectivity based on polyline groups. Three 
identical levels of this structure introduced are stacked 
together to model higher order of connectivity and to further 
ensure aggregation effectiveness. Finally, a max-pooling 
operation is applied to obtain polyline-level features 𝑝 in (12): 

𝑝 = 𝜑𝑎𝑔𝑔 (𝑽𝑖

(3)
) (12) 

Conduct polyline subgraph encoding to both agent and 
lane features and all outputs 𝑝 are served as the input node 
features of the global graph. 

D. Global Graph Network 

Vehicle future trajectory is influenced not only by past 
trajectory and lane constraints (including lane direction, traffic 
sign, etc.) but also by surrounding agents.  To model higher-
order interaction for both agent-to-agent and agent-lane, we 
design an attention-based global graph network composed of 
four attention layers. Multi-head attention[16] can capture 
long-range dependency by taking the entire context into 
consideration, and reasoning spatiotemporal interactions in 
sequential data problems.  

The structure of the global graph neural network is shown 

in Fig. 2, consisting of lane-lane, lane-agent, agent-agent, and 

global interaction layer, which are all realized by the attention 

model. The attention mechanism is defined as (13) and (14): 

𝐐 = 𝑾𝑸𝑿, 𝐊 = 𝑾𝑸𝒀, 𝐕 = 𝑾𝑸𝒀 (13) 

Attention(𝑸, 𝑲, 𝑽) =  softmax (
𝑸𝑲𝑻

√𝑑k

) 𝑽 (14) 

where 𝑿 and Y are input features, 𝑸, 𝑲, 𝑽 are attention query, 
key, and value respectively, and 𝑑k is the key channel (the size 
of  𝑲’s first dimension). For multi-headed conditions, 𝑸, 𝑲, 𝑽 
are further split to the same size in the last dimension as heads. 
They are sent into the attention mechanism respectively and 
combined together as output. When 𝑿 equals to Y, it is defined 
as self-attention; otherwise, it is called cross-attention. 

The first lane-lane interaction layer extracts the road 
restrictions by considering the connection relationship and 
whether they are drivable. The calculation follows (13) and 
(14), where 𝑿 and Y are both lane node features. Subsequently, 
the agent-lane layer could form elementary reasoning since 
vehicles drive along lanes. The modeling is similar to the lane-
lane layer except that 𝑿 are lane nodes and Y are agent nodes. 

The next step is to consider the influences of other agents. 
In feature engineering, we have derived the VIF adjacent 
matrix 𝑭̅ in (10). To merge the prior semantic knowledge and 
the results of network training, we design a trainable weight 𝑤 
to adjust the input features automatically as demonstrated in 
(15), where 𝑿 are the agent nodes updated by the former two 
layers. Weighted inputs are imported into a self-attention layer. 

𝑿′ = 𝑤𝑿 + (1 − 𝑤)𝑭̅ (15) 

The final layer is global interaction, which takes all 
elements to derive above into comprehensive account. The 
global input feature is the concatenation of the third-layer 
outputs and the initial lane nodes. The context extraction also 
utilized a self-attention mechanism. Finally, a global graph 
representing the traffic scenario context is established. 

E. Multi-modal Decoder 

After the global graph block, the feature of the target agent 
is obtained, which contains the information on interactions 
between the target agent and traffic elements. The last step 
toward trajectory prediction is to decode the semantic context 
global graph into precise routes.  

We apply a three-layer MLP to generate 6 predicted 
trajectories and another three-layer MLP to get the trust scores 
of all the trajectories which are formed as one-dimension 

vectors. For the 𝑚𝑡ℎ agent, we apply a residual block and a 
linear layer in the regression branch to regress the sequences 
of trajectory coordinates, as illustrated in (16): 

𝑃𝑚 = {(𝑇
𝑚,1
𝑘 , 𝑇

𝑚,2
𝑘 , 𝑇

𝑚,3
𝑘 , … , 𝑇𝑚,𝑡

𝑘 )} , 𝑘 ∈ [1,6] ∩ 𝑁 (16) 

where 𝑇𝑚,𝑡
𝑘  is the predicted m-th agent's trajectory 

coordinates of the k-th mode at the 𝑡𝑡ℎ time step. The single 

trajectory prediction follows the same method. Similarly, for 

the classification branch, we apply an MLP to 𝑃𝑚 to get six-

distance embedding. Then concatenate each distance 

embedding with the agent feature, and add a residual block 

and a linear layer to output six reliability scores {𝑆𝑚
𝑘 }. After 

the process of feature engineering, subgraph extraction, 
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global graph establishment, and multi-modal decoding, the 

trajectory prediction results of agents could be derived. 

IV. EXPERIMENTS 

A. Experiment Condition Setting 

In this research, we conducted training, testing, and 
validation on Argoverse (Argo) tracking dataset [30]. Argo 
provides abundant precise trajectories of all agents within over 
300k scenarios while offering a high-definition semantic map 
containing lane, traffic light phase, and other environmental 
information. Each instance is sampled in 10 HZ and 
trajectories are presented as 5-second-long sequences, where 
the former is 2 seconds as history trajectory and the latter 3 
seconds as prediction ground truth. Moreover, a large number 
of scenarios in Argo are complicated ones such as unprotected 
steering, lane changing, etc., requiring a strong ability to 
understand complex traffic contexts. During the feature 
engineering of the experiment, we extracted 205,942 training 
data and 39,472 validating data. 

Minimum Final Displacement Error (minFDE) and 
minimum Average Displacement error (minADE) are used as 
evaluation metrics of the models. MinFDE is defined as the 
minimum L2 distance error between the endpoint of the 
forecast trajectories and the ground truth. And minADE is 
defined as the L2 distance error between ground truth and the 
forecast trajectory with the lowest FDE. 

The specific task is to use the history information of the 
past two seconds to predict the trajectory in future three 
seconds. In this experiment, we test the performance of our 
model on both single trajectory and multi-modal trajectory 
prediction (𝑘 = 6), as mentioned in (16). 

B. Baseline Models 

To make a comprehensive comparison with current 
prediction models, we select three different types of models as 
baselines which are Sequential models, transformer-based 
models, and other graph-based models. To consider the real-
time requirements while applied to real vehicles, we only 
select models with fewer than 1000k parameters. 

1) Sequential model. As introduced in Section 2, 

sequential models including LSTM, RNN, etc. have shown 

remarkable performance in dealing with sequential data. In 

this experiment, by referring to prior research we adapt 

LSTM to multi-modal prediction tasks by first using a 

subgraph encoder to preprocess the input agent feature [21]. 

The architecture is shown in Fig. 4. After an additional linear 

layer, LSTM layers are directly used to process the target 

feature. The output is further placed in multi-modal or single 

decoder. 

 

Fig. 4.  The architecture of the LSTM baseline model. 

2) Transformer model. Transformer-based methods are 

capable of capturing interaction dependency in sequential 

data and thus possess long-term memory. In this experiment, 

we adapt the transformer structure introduced in [24] to serve 

as a baseline, consisting of an encoder block and decoder 

block, as shown in Fig. 5. Agent features are sent into masked 

multi-head attention. All layers are associated with residue 

connection. Apart from the transformer decoder, we attached 

a multi-modal decoder to adapt a particular prediction task. 

 

Fig. 5.  The architecture of the LSTM baseline model. 

3) GNN models. We also selected several other graph-

based models as baselines, including VectorNet [29], TNT 

[31], and GOHOME [25]. These methods contained various 

backbone designs and techniques of feature engineering, such 

as graph convolution, heat map weighting, etc. Because the 

authors of these models have conducted experiments on the 

same Argo dataset, in this research we directly use the data 

recorded in their publications (VectorNet for single 

prediction and the other two for multi-modal prediction). 

C. Results 

 After training for 50 epochs combined with linear learning 
rate decay and a large amount of model tuning, the model 
converges to the best performance on single and multi-modal 
trajectory prediction. The comparison results are shown in 
Table. Ⅰ and Table. Ⅱ. 

TABLE I.  SINGLE TRAJECTORY PREDICTION RESULTS 

Model minADE(m) minFDE(m) 

LSTM 1.66 3.74 

Transformer 1.54 3.45 

VectorNet 1.66 3.67 

Ours 1.40 3.06 

Our method leads to the performance of a single trajectory. 
The minADE is 1.40 𝑚, and the minFDE is 3.06 𝑚, which are 
both the best results among all baselines. Due to the novel 
design of a four-layer global graph architecture to extract 
interactive relationships, our model emphasizes the spatial 
reasoning of the traffic scenarios, which is lacking in the 
baselines. 

TABLE II.  MULTI-MODAL TRAJECTORY PREDICTION RESULTS 

Model minADE(m) minFDE(m) 

LSTM 0.90 1.65 

Transformer 0.80 1.36 

TNT 0.73 1.29 

GOHOME --a 1.26 

Ours 0.74 1.17 

a. GOHOME only published minFDE results 

As for multi-modal trajectory prediction, the minADE and 
minFDE of our model is 0.74 𝑚 and 1.17 𝑚. Although the 
minADE is slightly higher than TNT, our minFDE metric is 
9.3% better than TNT, making the ending point of the 
trajectory more precise. In summary, our model achieves good 
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performances on both metrics compared with current small-
scale multi-modal trajectory prediction models. To be 
mentioned, the final parameter size of our best model is 438k. 

TABLE III.  ABLATION RESULTS OF VIRTUAL INTERACTION FORCE 

 𝒘 minADE(m) minFDE(m) 

1 0.78 1.22 

0.25 0.75 1.19 

0.5 0.74 1.17 

 To further verify the proposed VIF concept, we conduct an 
ablation study to test its impact on it the prediction precision. 
In the backbone model, the weight between the VIF matrix and 
the attention result 𝑤 is automatically learned through training 
process, which is about 0.5 in the final results. To illustrate the 
effect of VIF concept, in this ablation experiment we adjust it 
into preset values to test the performance difference. The 
closer 𝑤  is to 1, the less force matrix is considered in the 
model, and the results are recorded in Table. Ⅲ.  

 The results of ablation study prove that the application of 
the VIF adjacent matrix improves the trajectory prediction 
performance effectively. When no prior knowledge is used, 
the minADE and minFDE are 0.04 𝑚 and 0.05 𝑚 worse than 
the best model respectively. The field energy and force 
express the interactions between agents, offering significant 
spatial reasoning information to the global graph. 

Fig. 6 illustrates some typical prediction examples of 
complicated scenarios, including car following, intersection, 
unprotected steering, etc. The black lines are lanes, red point 
denotes the target agent, the blue points denote other related 
agents, the green lines denote the multi-modal predictions of 
the target agent’s trajectory, and the red line denotes the 
ground truth. As shown in Fig. 6, our model could make 
appropriate predictions on various kinds of scenarios 
considering interactions and conflicts. 

 

Fig. 6.  A typical prediction example of VIF-GNN. 

V. CONCLUSIONS AND DISCUSSION 

This paper presents a novel method of traffic agent 
trajectory prediction model named VIF-GNN. Based on 
Virtual Interaction Force and other semantic feature 
engineering, the original scenes are transferred into vectorized 
context information. We also design a global graph based on 
GNN consisting of four interaction layers. 

The experiments on Argo dataset show that VIF-GNN can 
achieve precise prediction accuracy in both single and multi-
modal tasks compared with the baselines. For single trajectory 
prediction, the minADE and minFDE are 9.1% and 11.3% 
better, and for multi-modal the minFDE is 9.3% better with a 
roughly identical minADE. Examples show that VIF-GNN 
manages to conduct forecasting under complicated scenarios. 
The ablation study also verified the positive impact of VIF. 

In the future, we will further test the generalization ability 
of VIF-GNN by enhancing experiments on various datasets 
with different features (highway, roundabout, etc.) and various 
downstream tasks other than trajectory prediction such as risk 
assessment, behavioral decision, etc. 
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