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Robotics in 
2022

RT-1, Google
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Pick and place in structured env



Robotics in 
2024

Pi-0, Physical 
Intelligence
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Laundry



Robotics in 
2025

Pi-0.5, Physical 
Intelligence
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Open-world Mobile Manipulation 
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ACT-1, 
Sunday

Robotics this 
week

Open-world Mobile Manipulation 



More data, 
better generalization
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Data Scaling Law shown by Generalist AI1

1https://generalistai.com/blog/nov-04-2025-GEN-0



More data, 
better generalization
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But not reliable in new Environment!

Pi0 Zero-shot deployment in GRASP Lab1

1https://penn-pal-lab.github.io/Pi0-Experiment-in-the-Wild/
2https://aloha-unleashed.github.io/
3https://toyotaresearchinstitute.github.io/lbm1/

Success Rate doesn’t scale with more data

ALOHA Unleashed2

Large Behavior Model3
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Master skills via RL Bootstrapping

“ChatGPT” “Deepseek-R1”
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Master skills via RL Bootstrapping

Dyna-11 RL-1002

1https://www.dyna.co/dyna-1/research
2https://lei-kun.github.io/RL-100/
3https://hil-serl.github.io/

HIL-SERL3
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Design Philosophy

Bootstrap the data-
flywheel

Minimal 
human-
effort

PLD
Real world 

Deploy

On-policy RL post training + 
Sim2Real: 
VLA-RL, SimpleVLA-RL, π-
RL  

Real-World RL / Off2On:
SERL, Warm-start RL, RL-
100



Two-way Communication in 
data collection: 
RaC, HG-Dagger, DexFlyWheel

Policy Agnostic, 
Resource efficiency, 
Generalist2Generalist,
... 

2

1 3
1

2

3

https://ai.princeton.edu/events/2024/data-pyramid-and-data-flywheel-robotic-foundation-models?utm_source=chatgpt.com
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Pipeline in a Nutshell

• Stage 1 (Learn): Train a 
specialist residual policy for each 
task through online real-world 
RL.

• Stage 2 (Probe): Collect 
recovery data by probing the 
failure modes of the base policy.

• Stage 3 (Distill): Distill the 
acquired skills back into VLA 
model through supervised fine-
tuning.

• Deploy the generalist model in 
diverse manipulation tasks
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We have seen on-policy RL tuning VLA with hundreds 
or parallel simulation (GRPO, PPO), what about just 
one env that deployable on single physical hardware?

Key Components

Offline Warm-start: Collect success rollouts of the 
base-model to create a small offline dataset. Leverage 
Calibrated-QL[3] for conservative critic initialization 
(approximately 80k steps) while preventing 
underestimation.

Oversampling: Symmetric sampling from offline & 
online replay buffer as in Hybrid-RL[1] to increase high 
value state-action visitation.  

Sample-Efficient Real-World RL
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Offline warm-started, Off-policy, Residual RL, w/ 
Sparse Binary Reward 

Key Components

Online Exploration : 

Offline performance is bottlenecked when dataset lack 
sufficient corrective behavior or task diversity; Online 
RL with controlled exploration and on-the-fly 
refinement solves of better policy with improved 
reactivity and dexterity that is absent from the 
chunking policy.

Sample-Efficient Real-World RL
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Offline warm-started, Off-policy, Residual RL, w/ 
Sparse Binary Reward 

Key Components

Online Exploration : 

Accelerate exploration leveraging the prior knowledge 
from the base policy: Sampling 50% from offline 
buffer(self-bootstrapped data); Zero initialization and 
controll delta actor scale; State Distribution Shaping: 
Using base policy rollouts to initialize exploration 
(“Jump-start”[4])

Sample-Efficient Real-World RL
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Offline warm-started, Off-policy, Residual RL, w/ 
Sparse Binary Reward 

Architecture: 

Policy: VLA base policy (OpenVLA, OCTO, π_0) + light 
weight residual (ResNet + MLP)

Critic: Shared visual encoder (ResNet + MLP), 
Evaluates combined action

Reward: Learned success classifier (Could be replaced 
by foundation reward models)

Sample-Efficient Real-World RL
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Offline warm-started, Off-policy, Residual RL, w/ 
Sparse Binary Reward 

Objectives

Policy: MaxEnt RL (SAC)

Critic: Standard TD-loss with ensembled Q function

Sample-Efficient Real-World RL
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Sample-Efficient Real-World RL

We compare PLD-RL with baseline algorithms that either leverage policy 
prior or data prior. We report mean rollout performance and 95% CIs for 3 
seeds across 8 manipulation tasks selected from LIBERO-90. Performan on 

all tasks can surpass 95% SR when converge.
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Data flywheel with residual RL expert: RL data is highly optimal, with consistent 
and smooth behavior, no hesitation, shorter horizon. 

A straightforward way is to learn from this high-quality data, will surely result in 
improved task-specific performance. It’s good but...  

Scaling “Self-Curated” Data

*RL’S RAZOR: WHY ONLINE REINFORCEMENT LEARNING FORGETS LESS
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Hybrid data collection scheme: Incorporates base-policy 
initialization: We first rollout the base policy for random 
steps, then let the learned residual RL policy to take over.

  

Scaling “Self-Curated” Data
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The entire pipeline is policy agnostic, trivally adopts to 
different VLA architecture: Flow-based policy, 
autoregressive...

Auto-regressive: sequential NLL

 

Diffusion/Flow: Score matching/Velocity matching

Fine-tune modes: Head-only, full parameter, LoRA

Distillation via Supervised Fine-tuning (offline)
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Performance on Simulation Benchamarks 

LIBERO (https://libero-project.github.io/intro.html): Lifelong learning benchmark 
focused on language-guided manipulation tasks. It comprises 130 tasks grouped 
into four suites that stress object distribution, spatial arrangement, task goals

SimplerEnv (https://simpler-env.github.io): A suite of open-source simulated 
evaluation environments for common real robot manipulation setups (google robot 
in RT-series and WidowX in Bridge Dataset), aims for high sim-to-real correlation.
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Performance on Simulation Benchamarks 

Can PLD improve state-of-the-art VLA on in-domain tasks?
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Deep Dive: What does PLD brings to generalization

We have been talking about 
generalist2generalist... But 
what is wrong about self- 
bootstrapping successful 
behaviors / 0-1 REINFORCE ?

Generalization to unseen task: 
For each ration, random select 
tasks to form source domain; 
SFT on different data source; 
Zero-shot evaluation on all 
tasks (LIBERO-90)

PLD is as good as human 
oracle, if not better 
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Scaling “Self-Curated” Data

Scaling in-domain PLD data 
yields better few-shot 
performance:

π_0 SFT: Different scales of 
data from source tasks (plus 
10 oracle demos of unseen 
tasks).

Monotonic improvements in 
SFT performance as PLD 
data scales from 50 to 500 
trajectories.
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Resource Efficiency

VLA base policy remains frozen and we only optimize a lightweight residual MLP, 
the GPU memory footprint is significantly reduced compared to direct RL fine-
tune.

Peak VRAM ~5BG per task during online RL training (π_0 inference). 

CPU System RAM for replay buffer up to 100GB per task

Linear scalability for multi-task learning: We successfully parallelized the 
LIBERO-90 experiment by distributing 90 tasks across a cluster node with 90 
L40 GPUs and 10TB CPU memory.  

Pipeline implemented with JAX, accelerating using Just-in-time. We can easily 
deploy it on consumer-level compute (single 4090).
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Real-World Experiments

We deploy PLD on a 7-DoF Franka Emika Panda and 6-dom YAM ARM with 
end-effector delta pose control at 20~Hz. 

*Pease check out our website: https://www.wenlixiao.com/self-improve-VLA-PLD 
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Real-World Experiments
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Real-World Experiments

*Pease check out our website: https://www.wenlixiao.com/self-improve-VLA-PLD 

PLD improves data diversity by 
capuring recovery behavior that 
are neighter available in Human 
teleop data nor base-policy 
rollout data.

PLD can scale to long-horizon 
multi-stage tasks, the distilled 
action-chunking policy preserves 
reactivity and dexterity of the 
closed loop RL expert.



Conclusion

• We propose PLD, a three-stage post-training pipeline that enables 
VLA models to improve autonomously without relying on additional 
oracle human demonstrations. PLD has the potential of a self-
improving data flywheel.

• Across large-scale simulation experiments and real-world 
deployment, PLD improves without additional human demonstration, 
achieving near-saturated ∼99% success on LIBERO.

• Ablations identify residual policy probing and distribution-aware 
replay as key to stability, sample efficiency, and generalization.
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