Carnegie Mellon University

Self-Improving Vision-Language-Action Models with Data Generation via Residual RL

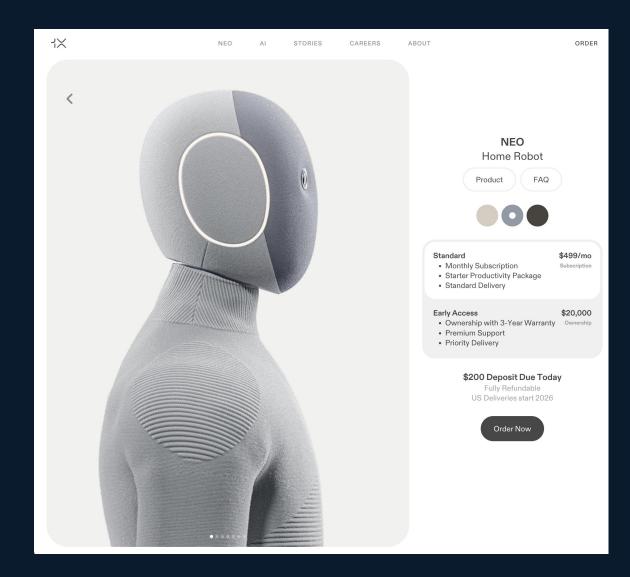
NOV 2025

Wenli Xiao Haotian Lin

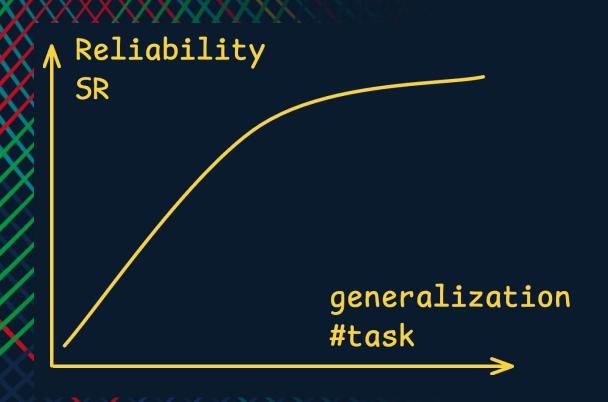
LeCAR@CMU, NVIDIA GEAR

Agenda

- 1. Background
- 2. Motivation
- 3. Method
- 4. Experiments
- 5. Conclusion



How far are we from general robots in our home?



How far are we from general robots in our home?

Robotics in 2022

RT-1 Controlling the robot 4x speed, unseen kitchen Instruction: Bring me the rice chips from the drawer. Current step: go to the drawers

RT-1, Google Pick and place in structured env

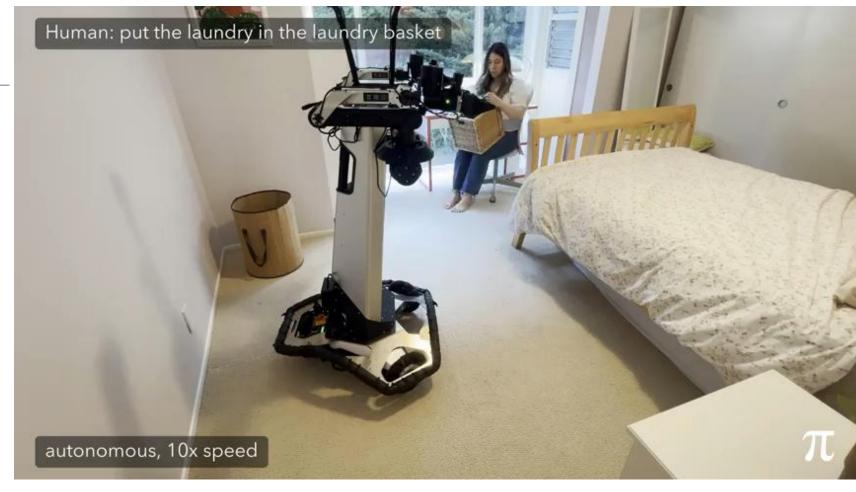
Robotics in 2024

Pi-0, Physical Intelligence

Laundry

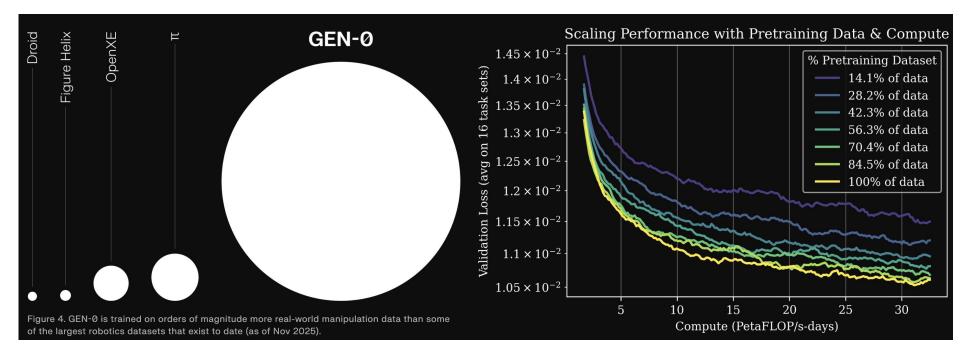
Robotics in 2025

Pi-0.5, Physical Open-world Mobilel Mariling lation



Robotics this week

More data, better generalization



Data Scaling Law shown by Generalist Al¹

More data, better generalization

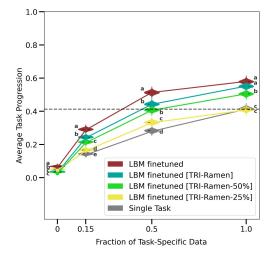
But not reliable in new Environment!

Pi0 Zero-shot deployment in GRASP Lab¹

Success Rate doesn't scale with more data

	ShirtEasy	ShirtMessy	Number of Demonstrations
Shirt-100%	75%	70%	8,658
Shirt-75%	75%	70%	6,493
Shirt-50%	85%	20%	4,329
Shirt-25%	30%	0%	2,164
Shirt-25%-LongFilter	30%	-	1,623
Shirt-25%-MediumFilter	55%	-	1,082
Shirt-25%-ShortFilter	40%	=	541

ALOHA Unleashed²



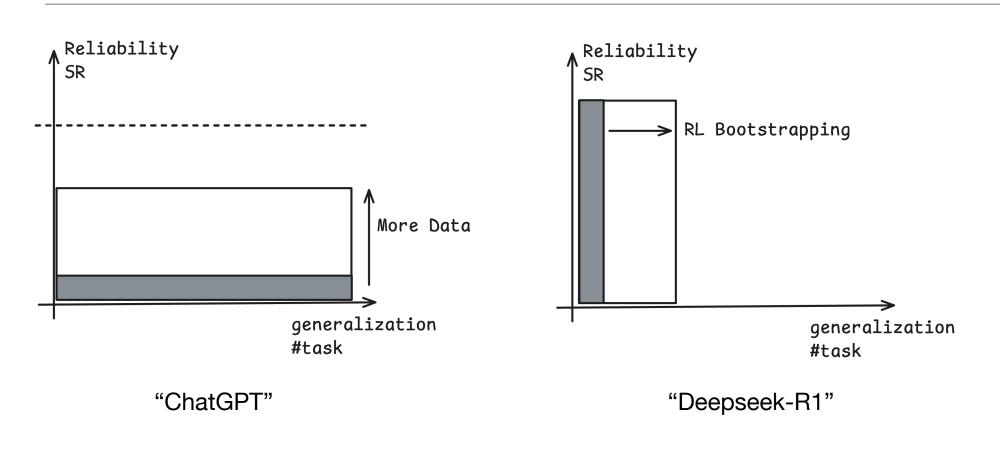
Large Behavior Model³

¹https://penn-pal-lab.github.io/Pi0-Experiment-in-the-Wild/

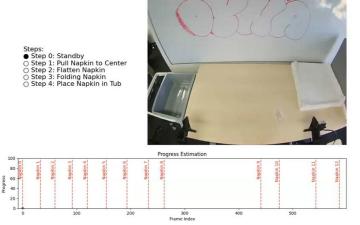
²https://aloha-unleashed.github.io/

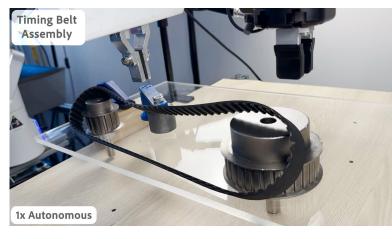
³https://toyotaresearchinstitute.github.io/lbm1/

Master skills via RL Bootstrapping



Master skills via RL Bootstrapping





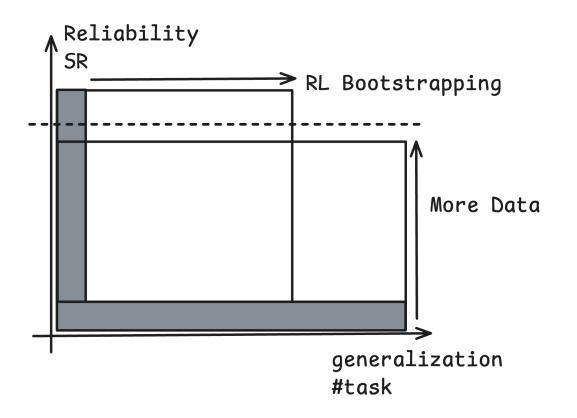
Dyna-1¹ RL-100² HIL-SERL³

¹https://www.dyna.co/dyna-1/research

²https://lei-kun.github.io/RL-100/

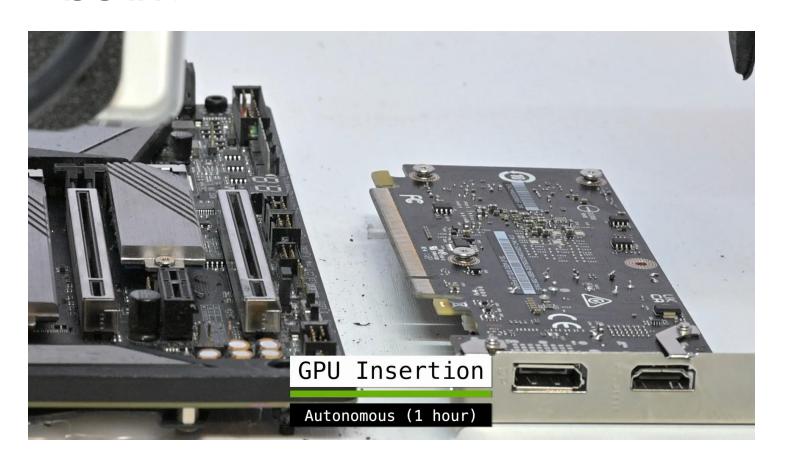
3https://hil-serl.github.io/

Can we achieve both?



```
>>> PLD.VLA = ... #OpenVLA, Pi0, Octo, ...
>>> PLD.robot = YAM_REAL_01()
>>> PLD.task = GPU_Insertion()
>>> PLD.Reward = binary()
>>> PLD.train()
VLA_star
```

Can we achieve both?



```
>>> PLD.VLA = ... #OpenVLA, Pi0, Octo, ...
>>> PLD.robot = YAM_REAL_01()
>>> PLD.task = GPU_Insertion()
>>> PLD.Reward = binary()
>>> PLD.train()
VLA_star
```

Design Philosophy

On-policy RL post training + Sim2Real:
VLA-RL, SimpleVLA-RL, π-RL

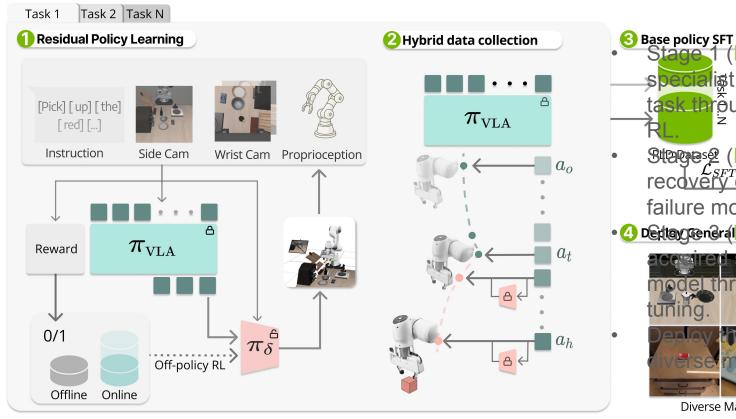
Real-World RL / Off2On: SERL, Warm-start RL, RL-100

Bootstrap the dataflywheel 3 PLD Real world **Minimal Deploy** humaneffort

Two-way Communication in data collection:
RaC, HG-Dagger, DexFlyWheel

Policy Agnostic, Resource efficiency, Generalist2Generalist,

Pipeline in a Nutshell



- Stage 1 (Learn): Train a
 specialist residual policy for each
 task through on the real-world
- Stages (Probe): Collect recovery data by probing the failure modes of the base policy.
- 4 Determination of the accepted skills page into VLA model through supervised fine-tuning.
 - Deploy the gate also nodel in weise manipulation tasks

Diverse Manipulation Tasks

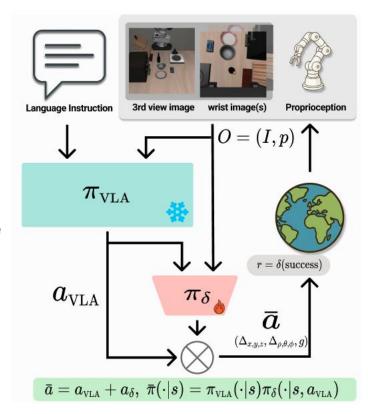
Sample-Efficient Real-World RL

We have seen on-policy RL tuning VLA with hundreds or parallel simulation (GRPO, PPO), what about just one env that deployable on single physical hardware?

Key Components

Offline Warm-start: Collect success rollouts of the base-model to create a small offline dataset. Leverage Calibrated-QL[3] for conservative **critic initialization** (approximately 80k steps) while preventing underestimation.

Oversampling: Symmetric sampling from offline & online replay buffer as in Hybrid–RL[1] to increase high value state–action visitation.



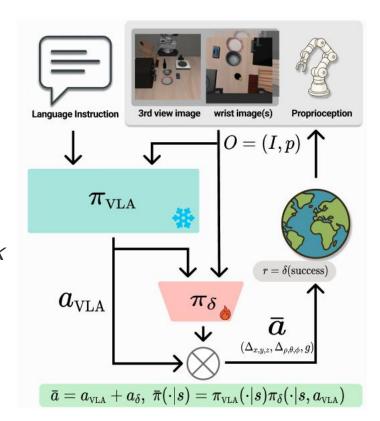
Sample-Efficient Real-World RL

Offline warm-started, Off-policy, Residual RL, w/ Sparse Binary Reward

Key Components

Online Exploration:

Offline performance is bottlenecked when dataset lack sufficient corrective behavior or task diversity, Online RL with controlled exploration and on-the-fly refinement solves of better policy with improved reactivity and dexterity that is absent from the chunking policy.



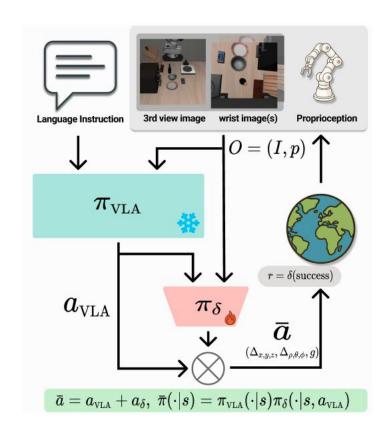
Sample-Efficient Real-World RL

Offline warm-started, Off-policy, Residual RL, w/ Sparse Binary Reward

Key Components

Online Exploration:

Accelerate exploration leveraging the prior knowledge from the base policy: Sampling **50%** from offline buffer(self-bootstrapped data); **Zero initialization** and controll delta actor scale; **State Distribution Shaping**: Using base policy rollouts to initialize exploration ("Jump-start"[4])



Sample-Efficient Real-World RL

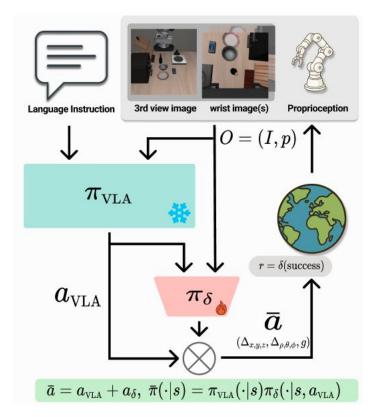
Offline warm-started, Off-policy, Residual RL, w/ Sparse Binary Reward

Architecture:

Policy: VLA base policy (OpenVLA, OCTO, π_0) + light weight residual (ResNet + MLP)

Critic: Shared visual encoder (ResNet + MLP), Evaluates combined action

Reward: Learned success classifier (Could be replaced by foundation reward models)



Sample-Efficient Real-World RL

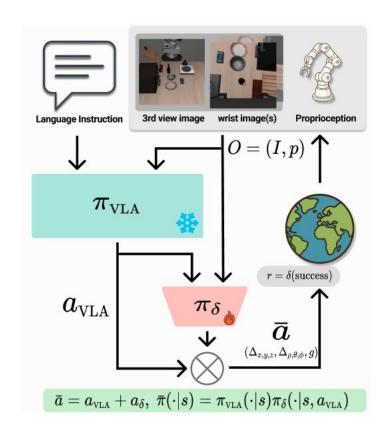
Offline warm-started, Off-policy, Residual RL, w/ Sparse Binary Reward

Objectives

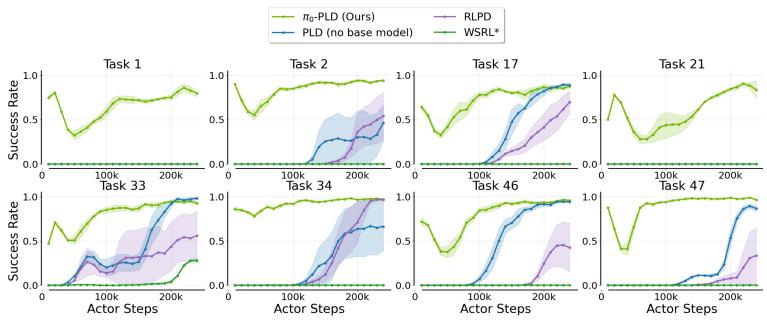
Policy: MaxEnt RL (SAC)

$$\pi_{\delta} = \arg \max_{\pi} \mathbb{E}_{a_{\delta} \sim \pi, a_{b} \sim \pi_{b}} Q^{\bar{\pi}}(a_{b} + a_{\delta}) - \alpha \log \pi(a_{\delta}|s)$$

<u>Critic</u>: Standard TD-loss with ensembled Q function $Q^{\bar{\pi}}(s_t, \bar{a}_t) \leftarrow r(s, a) + \gamma \mathbb{E}_{s_{t+1} \sim p(\cdot | s_t, \bar{a}_t)}[Q_{target}^{\bar{\pi}}(s_{t+1}, \bar{a}_{t+1})]$



Sample-Efficient Real-World RL

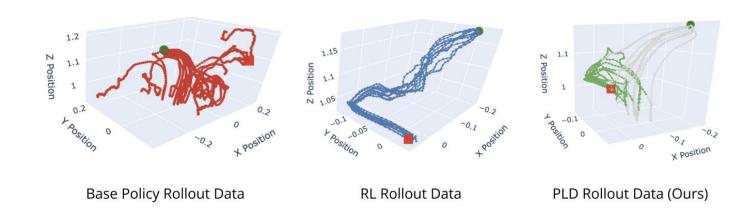


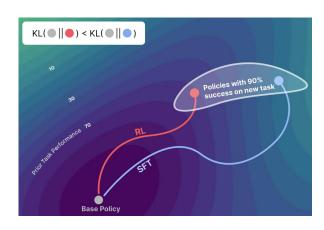
We compare PLD-RL with baseline algorithms that either leverage policy prior or data prior. We report mean rollout performance and 95% Cls for 3 seeds across 8 manipulation tasks selected from LIBERO-90. Performan on all tasks can surpass 95% SR when converge.

Scaling "Self-Curated" Data

Data flywheel with residual RL expert: RL data is highly optimal, with consistent and smooth behavior, no hesitation, shorter horizon.

A straightforward way is to learn from this high-quality data, will surely result in improved task-specific performance. It's good but...

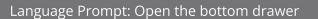


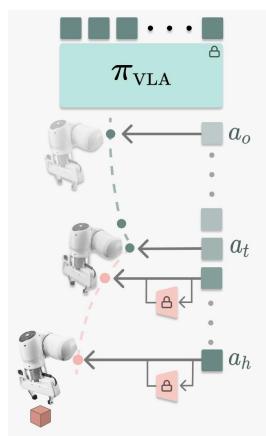


Scaling "Self-Curated" Data

Hybrid data collection scheme: Incorporates base-policy initialization: We first rollout the base policy for random steps, then let the learned residual RL policy to take over.

$$\tau_{demo} = \{(s_1, a_{b,1}), \dots, (s_{t-1}, a_{b,t-1})\} \cup \{(s_t, a_{b,t} + \bar{a}_t), \dots\}$$





Distillation via Supervised Fine-tuning (offline)

The entire pipeline is policy agnostic, trivally adopts to different VLA architecture: Flow-based policy, autoregressive...

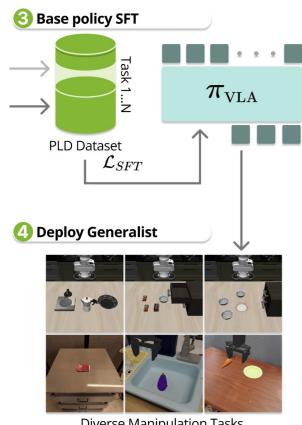
Auto-regressive: sequential NLL

$$\mathcal{L}_{AR}(\theta) = -\mathbb{E}_{k \sim [K]} \left[\log p_{\theta} (u_k \mid u_{< k}, x) \right]$$

Diffusion/Flow: Score matching/Velocity matching

$$\mathcal{L}_{\text{diff}}(\theta) = \mathbb{E}_{t,\epsilon,(x,a)} \left[\left\| \epsilon - \epsilon_{\theta}(a_t^{(\text{noisy})}, x, t) \right\|_2^2 \right]$$

Fine-tune modes: Head-only, full parameter, LoRA

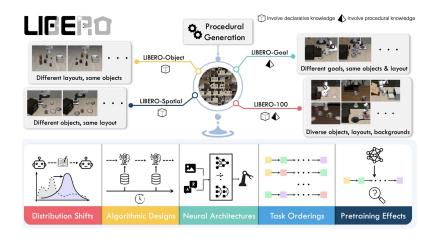


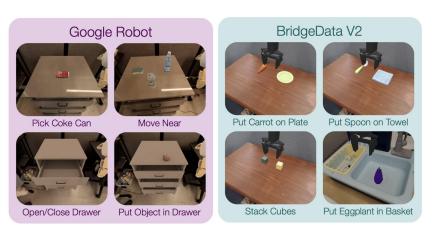
Diverse Manipulation Tasks

Performance on Simulation Benchamarks

LIBERO (https://libero-project.github.io/intro.html): Lifelong learning benchmark focused on language-guided manipulation tasks. It comprises 130 tasks grouped into four suites that stress object distribution, spatial arrangement, task goals

SimplerEnv (https://simpler-env.github.io): A suite of open-source simulated evaluation environments for common real robot manipulation setups (google robot in RT-series and WidowX in Bridge Dataset), aims for high sim-to-real correlation.





Performance on Simulation Benchamarks

Can PLD improve state-of-the-art VLA on in-domain tasks?

Table 1: Performance on LIBERO benchmark of VLA models fine-tuned on PLD data.

	π_0			OpenVLA				
Model	Spatial	Object	Goal	Avg	Spatial	Object	Goal	Avg
Baseline (SFT/OFT)	95.2	97.6	87.4	93.4	92.9	99.1	83.25	91.8
w/ PLD	97.7	98.5	95.3	97.2	99.5	99.1	98.9	99.2
Δ	+2.5	+0.9	+7.9	+3.8	+6.6	+0.0	+15.7	+7.4

Table 3: Evaluate **PLD** on SimplerEnv

Model	WidowX Pick Eggplant	WidowX Pick Carrot	Google Open Drawer	Google Coke Can	Avg
Octo-SFT	65.5	43.3	92.5	85.7	71.8
w/ours	97.8	93.9	99.3	95.5	96.6
Δ	+32.3	+50.6	+6.8	+9.8	+24.9

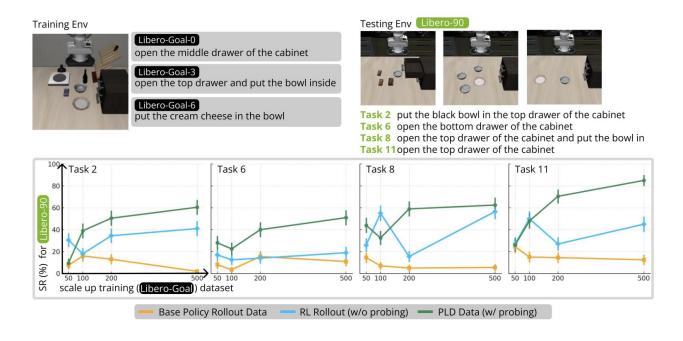
Deep Dive: What does PLD brings to generalization

We have been talking about generalist2generalist... But what is wrong about self-bootstrapping successful behaviors / 0-1 REINFORCE?

Generalization to unseen task: For each ration, random select tasks to form source domain; **SFT** on different data source; **Zero-shot evaluation** on all tasks (LIBERO-90)

PLD is as good as human oracle, if not better

Scaling "Self-Curated" Data



Scaling in-domain PLD data yields better few-shot performance:

 π_0 SFT: Different scales of data from source tasks (plus 10 oracle demos of unseen tasks).

Monotonic improvements in SFT performance as PLD data scales from 50 to 500 trajectories.

Resource Efficiency

VLA base policy remains frozen and we only optimize a lightweight residual MLP, the GPU memory footprint is significantly reduced compared to direct RL fine—tune.

Peak VRAM ~5BG per task during **online RL training** (π_0 inference).

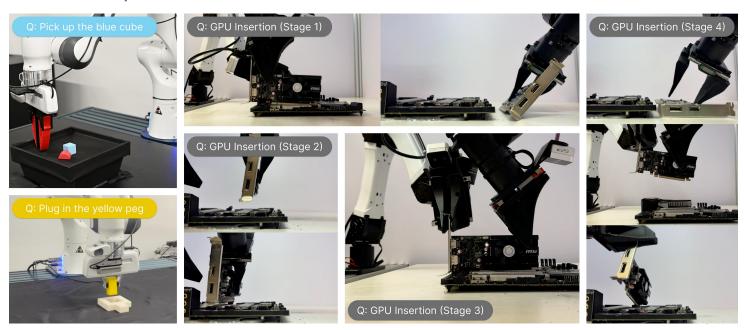
CPU System RAM for replay buffer up to 100GB per task

Linear scalability for multi-task learning: We successfully parallelized the LIBERO-90 experiment by distributing 90 tasks across a cluster node with **90 L40 GPUs** and **10TB CPU memory**.

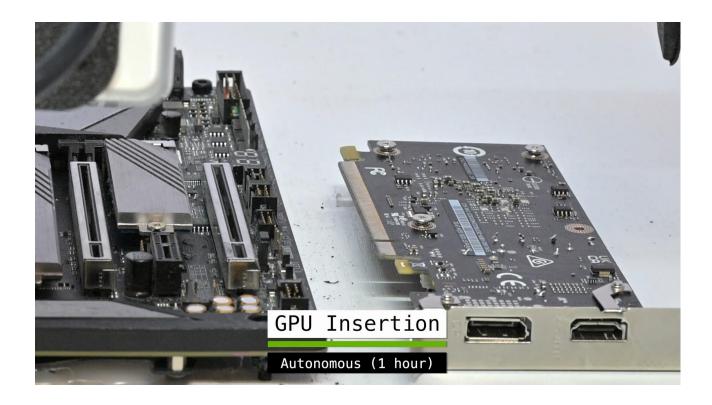
Pipeline implemented with **JAX**, accelerating using Just-in-time. We can easily deploy it on consumer-level compute (single 4090).

Real-World Experiments

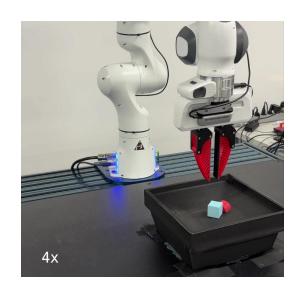
We deploy PLD on a 7-DoF Franka Emika Panda and 6-dom YAM ARM with end-effector delta pose control at 20~Hz.



Real-World Experiments



Real-World Experiments



PLD improves data diversity by capuring **recovery behavior** that are neighter available in Human teleop data nor base–policy rollout data.

PLD can scale to long-horizon multi-stage tasks, the distilled action-chunking policy preserves reactivity and dexterity of the closed loop RL expert.

Conclusion

- We propose PLD, a three-stage post-training pipeline that enables VLA models to improve autonomously without relying on additional oracle human demonstrations. PLD has the potential of a selfimproving data flywheel.
- Across large-scale simulation experiments and real-world deployment, PLD improves without additional human demonstration, achieving near-saturated ~99% success on LIBERO.
- Ablations identify residual policy probing and distribution—aware replay as key to stability, sample efficiency, and generalization.

